Taste bud cell dynamics during normal and sodium-restricted development.
نویسندگان
چکیده
Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching.
منابع مشابه
Early dietary sodium restriction disrupts the peripheral anatomical development of the gustatory system.
Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed ei...
متن کاملNeuron/target plasticity in the peripheral gustatory system.
Taste bud volume on the anterior tongue in adult rats is matched by an appropriate number of innervating geniculate ganglion cells. The larger the taste bud, the more geniculate ganglion cells that innervate it. To determine if such a match is perturbed in the regenerated gustatory system under different dietary conditions, taste bud volumes and numbers of innervating neurons were quantified in...
متن کاملSelective Deletion of Sodium Salt Taste During Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knockout ...
متن کاملKeratin 18 is associated with a subset of older taste cells in the rat.
All or nearly all intragemmal (elongated) cells of rat taste buds were immunopositive for keratins 7, 8, and 19. In contrast, keratin 18 was detected in 19 +/- 5 cells per taste bud (mean +/- sd), or about 25% of the intragemmal cells. During taste bud development keratins 7, 8, and 19 were evident initially in polygonal cells and later in elongated taste cells. Keratin 8 appeared in vallate ta...
متن کاملTaste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 472 2 شماره
صفحات -
تاریخ انتشار 2004